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ABSTRACT

Previous work on ad hoc network capacity has focused pri-
marily on source-destination throughput requirements for
different models and transmission scenarios, with an em-
phasis on delay tolerant applications. In such problems, net-
work capacity enhancement is achieved as a tradeoff with
transmission delay. In this paper, the capacity of ad hoc
networks supporting delay sensitive traffic is studied. To
enhance the network capacity, advanced signal processing
techniques such as multiuser detection, which can be im-
plemented adaptively and blindly, are relied upon. For sys-
tem capacity derivation, results from random graph theory
are combined with an asymptotic physical layer analysis for
three different network scenarios employing matched filters,
decorrelators and minimum-mean-square-error receivers. In-
sight into the network performance for finite systems is also
provided by means of simulations. Both analysis and simu-
lations show a significant network capacity gain for ad hoc
networks employing multiuser detectors, compared with those
using matched filter receivers, as well as very good perfor-
mance even under tight delay and transmission power re-
quirements.

1 Introduction

A mobile ad hoc network consist of a group of mobile nodes
which spontaneously form temporary networks without the
aid of a fixed infrastructure or centralized management. The
communication between any two nodes can either be direct
or relayed through other nodes (if the direct transmission
causes too much interference in the network). The ad hoc
networks research literature has been traditionally focused
on routing and medium access control and only recently
there has been an increased interest in characterizing the ca-
pacity of such networks. We mention here a few landmark
papers that analyze network capacity in terms of achievable
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throughput under different system models and assumptions
[6, 8, 10]. While in [10] the authors focus on fixed, finite
networks and derive capacity regions under various prede-
fined transmission protocols, and considering omniscient
nodes, [8] and [6] discuss the asymptotic throughput per-
formance for fixed and mobile networks, respectively. In
[8], the authors study the capacity of a fixed ad hoc net-
work in which the nodes’ locations are fixed but randomly
distributed. They prove that, as the number of nodes (N )
per unit area increases, the achievable throughput between
any randomly selected source-destination pair is on the or-
der ofO(1/

√
N). In contrast to this somewhat pessimistic

result, [6] shows that exploiting mobility can result in a form
of multiuser diversity and can improve the system capacity.
The authors of [6] propose a two-hop transmission strategy
in which the traffic is first randomly spread (first hop) across
as many relay nodes as possible and it is delivered (second
hop) as soon as the relaying nodes are close to the desti-
nation. The disadvantage of this scheme is that it involves
large delays and therefore it is not suitable for delay sensi-
tive traffic. A capacity increase with mobility has also been
noticed in [7], in which the capacity is empirically deter-
mined for a different network model that exploits spatial di-
versity.

In this paper, we study the capacity of large mobile ad
hoc networks carrying delay sensitive traffic. Because of
tight delay requirements, we cannot take advantage of mo-
bility as in [6]. To improve the capacity we rely on ad-
vanced signal processing techniques such as multiuser de-
tection, which can be implemented adaptively and blindly
(e.g. [13]).

We analyze the network for a given stationary distribu-
tion of the mobile nodes’ locations with constraints on the
maximum number of hops between any arbitrary source-
destination pair. Using arguments similar to those in [8]
we show that limiting the maximum number of hops for
any given transmission also improves the source-destination
throughput by limiting the additional transmissions for the
relayed traffic. On the other hand, reducing the number of
hops has a negative impact on the capacity by increasing



the interference level. Thus, for delay sensitive traffic, the
network capacity is interference limited and multiuser re-
ceivers can significantly improve the performance.

For the network capacity derivation, we use results from
random graph theory [4]. A random graph is characterized
by the numberN of nodes and the probabilityp of maintain-
ing a link between two arbitrary nodes . Using the results
proved in [3] we can obtain a constraint on the probability
of maintaining a link such that the graph’s diameter isD
with high probability as the number of nodes goes to infin-
ity. As these results are asymptotic in nature we also vali-
date them through simulations for finite values ofN . The
graph diameter represents the longest shortest path between
any two nodes, and consequently, is the maximum num-
ber of hops required for transmission between any given
pair of nodes. The probabilityp characterizes the physi-
cal layer and is defined as the probability that the signal-
to-interference ratio can be maintained above the desired
target. We computep for different scenarios (Code-division
multiple-access (CDMA) with random spreading codes and
matched filter, minimum-mean-square-error (MMSE) and
decorrelating receivers) using an asymptotic analysis (both
the number of nodes and the spreading gain are taken to in-
finity while maintaining their ratio constant) [11].

Random graph theory results have been previously used
for ad hoc networks in the context of call admission con-
trol [5]. In [5], the authors emphasized the importance of
network connectivity and network admission control crite-
ria were proposed. No specific physical layer analysis was
provided. In this paper, we study the interplay between net-
work layer quality of service (QoS) requirements (delay and
throughput) modeled using random graph theory, and physi-
cal layer QoS requirements (signal-to-interference ratio tar-
get) with an emphasis on capacity gains obtained through
signal processing.

2 System Model

We consider an ad hoc network consisting ofN mobile
nodes, having a uniform stationary distribution over a square
area, of dimensionD∗ × D∗. The multiaccess scheme is
synchronous direct-sequence CDMA (DS-CDMA) and three
types of receivers are considered: matched filter (MF), decor-
relator, and linear minimum mean squared error. All nodes
use independent, randomly generated and normalized spread-
ing sequences of lengthL. For simplicity, we assume that
all nodes transmit with the same power,Pt, and we define
the signal-to-noise ratio (SNR), as the ratio between the
transmitted power and the noise power:SNR = Pt/σ2.
The analysis considers the free space propagation model for
which the received power is given as:

Pr = P ∗t GtGr
λ2

(4πd)2
= Pt

λ2

d2
= Pth, (1)

wherePt represents the transmitted power which incorpo-
rates also the transmitting and receiving antenna gains and
the constant1/(4π)2, λ is the wavelength,d is the distance
between the transmitter and the receiver, andh is the link
gain.

The traffic can be directly transmitted between any two
nodes, or it can be relayed through intermediate nodes. It
is assumed that at each time slot the packets travel one hop,
so that the end-to-end delay can be measured as the num-
ber of hops required for a route to be completed. The QoS
requirements for the ad hoc network are the bit error rate
(mapped into a signal-to-interference ratio (SIR) require-
ment), the average source-destination throughput (TS−D),
and the transmission delay. Both the throughput and the
delay are influenced by the maximum number of hops al-
lowed for a connection, and consequently by the network
diameterD. Using arguments similar to those in [8], a sim-
plified computation shows that, if the number of hops for a
transmission isD, each node generatesDλ(N) traffic for
other nodes (λ(N) represents the traffic generation rate for
a given node). Thus, the total traffic in the network has to
meet the stability conditionDλ(N)N ≤ W/L, whereW is
the system bandwidth. This implies that the maximum aver-
age source-destination throughput that can be supported by
the network is

TS−D =
W

LD
. (2)

Thus, lower network diameter constraints will ensure lower
transmission delays and higher source-destination through-
puts for the network.

In terms of SIR requirements, a connection can be es-
tablished between two nodes if the SIR is greater than or
equal to the target SIRγ. The obtained SIR for a partic-
ular link is random due to the randomness of the nodes’
positions. To compute the probability of a connection be-
tween any two nodes we rely on results developed in [9] on
the distribution of distances between any two nodes, when
the nodes’ locations are uniformly distributed in a rectan-
gular area. In [9] the authors have obtained an exact dis-
tribution for the distances between any two users that are
uniformly distributed in a rectangular area. They also have
proved that the obtained cumulative distribution function
(CDF)(and probability density function (pdf), respectively),
can be well approximated by the CDF obtained considering
an alternate model, in which the nodes are distributed ac-
cording to a Gaussian distribution having the standard devi-
ationσ1 = D∗/k, with k = 3.5. The CDF for the Gaussian
model is given by

Fd(y = kσ1x) = 1− exp
(
−k2

4
x2

)
. (3)



Equivalently, (3) can be expressed as

Fd(y) = 1− exp
(
− k2

4D∗2 y2

)
. (4)

The similarity between the two models is illustrated in Fig.
1 for an example withD∗ = 20. For simplicity, we use the
expression in (4) throughout the analysis, while the simula-
tions rely on the actual uniform distribution over the square
area.
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Figure 1. Gaussian approximation model: CDF

We denote byδm = λ the minimum distance for re-
ception and byδM =

√
2D∗ the maximum distance be-

tween two nodes (nodes uniformly distributed in a square
area). Hence, the link gainh takes values in the interval[
λ2/δ2

m, λ2/δ2
M

]
with high probability (e.g. according to

the Gaussian modelP (d ≤ δm) ≈ 8.5033 × 10−4, and
P (d ≥ δM ) ≈ 0.0022 for λ = 0.1 m andD∗ = 6). As a
consequence, the CDF for the link gain can be expressed as
follows:

FH(h) = 1− Fd

(
λ2/

√
h
)

= exp
(
−C

h

)
, h > 0, (5)

whereC = k2

4D∗2 λ2.
Taking the derivative of (5) we obtain the probability den-
sity function for the link gain:

fH(h) =
C

h2
exp(−C

h
), h ≥ 0. (6)

Using (6) the mean link gain can be easily computed to be

EH ≈ C
[
E1(δ2

mC)− E1(δ2
MC)

]
, (7)

whereE1(x) =
∫∞

x
1
t exp(−t)dt is the exponential inte-

gral.
We define the network capacity to be the maximum num-

ber of nodes that can be supported such that both the SIR

constraints and the delay constraints can be met for any ar-
bitrary source-destination pair of nodes. We map the delay
constraints into a maximum network diameter constraintD.
To characterize the network capacity we use results from
random graph theory, where the ad hoc network represents
a random graphG(N , p) with N nodes and the probabil-
ity of a link between any two nodes being equal top. The
probabilityp is given by the physical layer such that the SIR
constraints are met.

We characterize the ad hoc network asymptotic capacity
for the case for which the number of nodes and the spread-
ing gain go to infinity, while their ratio is fixed.

3 Asymptotic Capacity

To characterize the ad hoc network capacity we rely on re-
sults from random graph theory [3], which determine the
network diameter for a given link probability valuep, when
the number of nodes goes to infinity. We summarize the
main results needed (from [3]) in the following theorem:

Theorem 1 [3] Let c be a positive constant,D = D(N) ≥
2 a natural number, and definep = p(N, c, D), 0 < p < 1,
by

pDND−1 = log
(

N2

c

)
. (8)

Suppose that(pN)/(log N)3 → ∞. Then inG(N , p) we
have

lim
N→∞

P (diamG = D) = e−c/2, and

lim
N→∞

P (diamG = D + 1) = 1− e−c/2

In Fig. 2 we illustrate the theoretical link probability re-
quirements for an ad hoc network with a finite number of
nodes for given network diameter requirements, derived ac-
cording to Theorem 1. The constantc was selected such
that the probability that the network has diameterD is 0.99.
In Section 4 we will discuss the theorem’s applicability for
such finite networks.

From Fig. 2 we notice that network diameter guarantees
can be translated into physical layer guarantees using a link
probability requirement. The link probability is affected by
the level of interference and thus it will be very sensitive to
the choice of receiver.

We derive the asymptotic capacity regions for three types
of receivers: matched filter, decorrelator and linear MMSE,
under specific constraints on the link probabilityp.

Matched Filter
The SIR condition for an arbitrary useri using a matched

filter receiver in a network with random, normalized spread-
ing sequences can be expressed as

SIRi =
hi

SNR−1 + 1
L

∑N
j=1, j 6=i hj

≥ γ , (9)
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Figure 2. Link probability requirement for different delay
constraints

when all users transmit with equal powers.
Denoting byα the fixed ratioN/L and letting the num-

ber of nodes and the spreading gain go to infinity, by using
the law of large numbers [14], it follows that
1
L

∑N
j=1, j 6=i hj → αEH , with EH computed as in (7).

The network diameter guarantees require a link probability
value equal top. This translates into a physical layer condi-
tion

P
(
h ≥ γSNR−1 + αγEH

)
= P (h ≥ ThrMF ) = p.

(10)
Using the notationThrMF = γSNR−1 + αγEH , the net-
work diameter condition renders anSNR condition

γSNR−1+αγEH = ThrMF ⇒ SNR =
γ

ThrMF − αγEH
,

(11)
whereThrMF can be derived using (5) as follows

p = 1− FH(ThrMF ) = 1− exp
(
−C

1
ThrMF

)
; (12)

ThrMF =
C

log
(

1
1−p

) . (13)

Equation (11) implies that a positive power solution exists
if and only if

αMF <
ThrMF

γEH
=

C

log( 1
1−p )

γEH
. (14)

For ad hoc networks, it is most likely that the mobile nodes
are energy limited and so we assume that a maximum power
transmission limitP̄t is imposed. DenotingSNRc = P̄t/σ2,
the ad hoc network capacity region becomes

αMF ≤ ThrMF

γEH
− 1

EHSNRc
=

C

log( 1
1−p )

γEH
− 1

EHSNRc
.

(15)

Decorrelator
According to results presented in [11], the SIR of an ar-

bitrary user in an asymptotically large network using decor-
relating receivers can be expressed as:

SIRd =
{

Pth(1−α)
σ2 ,

0,

α < 1
α ≥ 1.

(16)

Thus, if no power constraints are imposed the network ca-
pacity region is

αd < 1. (17)

If power constraints are imposed, and a maximumSNRc is
allowed, the physical layer constraint can be expressed as:

P

(
h ≥ γ

SNRc(1− α)

)
= p. (18)

Similarly to the matched filter case, we can defineThrd,
which is computed using the same formula (13), and thus

SNR =
γ

Thrd(1− α)
≤ SNRc. (19)

Consequently, the asymptotic capacity region for a network
using decorrelating receivers and having transmission power
constraints is given as

αd ≤ 1− γ

ThrdSNRc
= 1− γ

C

log( 1
1−p )SNRc

. (20)

MMSE Detector
To derive the asymptotic ad hoc network capacity region

for the MMSE detector we first express the SIR for an arbi-
trary useri in a large network using MMSE receivers, as in
[11], for equal transmitted powers for all users:

SIRi =
hi

SNR−1 + 1
L

∑N
j=1,j 6=i

hihj

hi+hjγ

. (21)

Denotingα = N/L, as the number of nodes and the spread-
ing gain go to infinity, we can apply the law of large num-
bers to yield

1
L

N∑

j=1, j 6=i

hihj

hi + hjγ
= α

1
N

N∑

j=1, j 6=i

hihj

hi + hjγ
→ αE[H/hi],

where we used the notationE[H/hi] to denote the nor-
malized conditional average interference (normalized to the
number of users per dimension). It can be shown thatE[H/hi]
can be expressed as:

E[H/hi] =

= C exp
(

Cγ

hi

)[
E1

(
δ2
mC +

Cγ

hi

)
− E1

(
δ2
MC +

Cγ

hi

)]
.

(22)
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Figure 3. SIR condition monotonicity

Thus, the link probability constraint becomes

P
(
h ≥ γSNR−1 + αγE[H/h]

)
= p. (23)

We define the functionf(h) = h−γSNR−1−αγE[H/h]
and we plot it in Fig. 3. We observe thatf(h) is a mono-
tonically increasing function ofh for the region of interest,
and thus, we can express the condition (23) as

P (h ≥ ThrMMSE) = p. (24)

Equation (24) has the same solution as in the previously
analyzed cases, and the physical layer constraint becomes:

SNR =
γ

ThrMMSE − αγE[H/h = ThrMMSE ]
. (25)

A positive transmit power solution exists if and only if

αMMSE <
ThrMMSE

γE[H/h = ThrMMSE ]
; (26)

or equivalently,

αMMSE <

C

log
(

1
1−p

)

γC
(

1
1−p

)γ [
E1

(
δ2

mC + γ log
(

1
1−p

))
− E1

(
δ2

MC + γ log
(

1
1−p

))] .

(27)
If power constraints are imposed, the capacity region be-
comes

αMMSE ≤
ThrMMSE

γE[H/h = ThrMMSE ]
− 1

E[H/h = ThrMMSE ]SNRc
.

(28)

Figure 4 illustrates the physical layer capacity as a func-
tion of the link probability constraint for the three receivers
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Figure 4. Physical layer capacity for given link probability
constraint

considered and with or without power constraints. For the
power-constrained case, a maximum transmission power of
P̄t = 104σ2 is considered for this example.

The ad hoc network capacity is determined by combin-
ing (8) with the above derived capacity equations for the
physical layer, withα = N/L. We note that the link proba-
bility p expressed as a characteristic of the physical layer is
a constant for all analyzed scenarios for the asymptotic case
(both the number of users and the spreading gain are driven
to infinity, while maintaining their ratio constant). This en-
sures that(pN)/(log N)3 → ∞, and the assumptions of
Theorem 1 hold.

Thus, for different average source-destination through-
put requirements, the maximum number of users in the ad
hoc network can be determined as a function of delay con-
straints (expressed as network diameter constraints). Figure
5 illustrates an example for the ad hoc network capacity for
the three types of receivers whenPt ≤ P̄t = 104σ2, for two
different values of the spreading gain.

From Figs. 4 and 5, we notice that there is a significant
capacity advantage if multiuser receivers are used, and con-
versely, for given capacity requirements, substantial power
savings can be achieved by networks using multiuser re-
ceivers. As expected, the MMSE receiver performs the best
due to its property of maximizing the SIR. For higher trans-
mission rates and lower delay requirements, using the matched
filter is not feasible.

An important observation is that the actual achieved av-
erage source-destination throughput decreases proportion-
ally with the network diameterD (TS−D = W/(LD)), as
discussed in the previous section.
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4 Finite Networks Simulations

The capacity results obtained in the previous section are
asymptotic in nature, thus requiring validation through sim-
ulations for practical finite networks. All numerical results
in this section are obtained usingD∗ = 6, λ = 0.1 m and
γ = 5. Since we showed in the previous section that the net-
work using matched filters performs poorly compared with
a system using multiuser detectors, the emphasis is on net-
works using multiuser receivers, and the results are only
validated for the matched filter case. All the experiments
consider unlimited power transmission for the MMSE case,
and maximum power constraints for the decorrelator,P̄t =
104σ2 (the case with unlimited transmission power is triv-
ial: α < 1).

The conducted experiments consist of selecting a finite
(variable) number of nodes and randomly generating their
locations uniformly across a square area. Then, the link
gains, and consequently the achieved SIRs are computed
for all pairs of nodes, using Eqs. (9), (16), and (21), re-

spectively. We note that the simulations do not consider
the SIR formulas’ accuracy for finite systems, as this issue
has already been studied in [12], where it was shown that
the standard deviation for the achieved SIR goes to zero as
1/
√

N .

If the computed SIR is greater than or equal to the tar-
get SIR, the link is feasible. The adjacency matrix is then
constructed, and based on it, the network diameter is deter-
mined. The computation of the network diameter uses Di-
jkstra’s algorithm [2], as a Matlab function from the Bayes
Net Toolbox package [1]. The experiment is repeated 100
times and the probabilities associated with a range of net-
work diameters are determined. An infinite network diame-
ter means that the network is disconnected.

We also determine the probability of a feasible linkp
and we compare it with the theoretical, asymptotic results.
Some simulation examples are presented in Tables 1 and 2.
It can be seen that the physical layer capacity results, re-
flected in the achievable link probabilityp, are very close
to the asymptotic ones, whereas the network performance
is strongly affected. The physical layer capacity perfor-
mance quickly approaches that of the asymptotic system as
the number of nodes grows.

On the other hand, the effect of the reduced number of
nodes on the obtained network diameter is very strong. In
Table 1 we can observe how the network diameter drifts to
a higher value than the one expected, as the link probability
decreases. For very small values ofp, the obtained network
diameter also begins to spread across multiple values. Sim-
ilar behavior was observed for the decorrelator and for the
matched filter case. We also noticed that there are break-
point probabilities for which the network diameter changes,
and they appear to be invariant to the receiver type and to
the number of nodes for the range of nodes considered for
the simulation. This is best illustrated in Fig. 6, for a large
range for the number of users (nodes) in the network.
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Figure 6. Network diameter: simulations



Table 1.Simulation results: MMSE; (A)= asymptotic anal-
ysis results, (S)=simulation results.

N/L p (A) /p (S) D (A)/ D (S)

38/32 0.6056/0.7491 D=2
1 2 3 4 5 6 7 8

0

0.5

1

Inf 
D 

p 

39/32 0.5415/0.4886 D=2
1 2 3 4 5 6 7 8

0

0.5

1

Inf 
D 

p 

42/32 0.4024/0.433 D=3
1 2 3 4 5 6 7 8

0

0.5

1

Inf 

p 

D 

45/32 0.3137/0.3260 D=3
1 2 3 4 5 6 7 8

0

0.5

1

Inf 

p 

D 

46/32 0.2913/0.2983 D=3
1 2 3 4 5 6 7 8

0

0.5

1

Inf 

p 

D 

48/32 0.2537/0.2590 D=3
1 2 3 4 5 6 7 8

0

0.5

1

Inf 

p 

D 

57/32 0.1546/0.1584 D=3
1 2 3 4 5 6 7 8

0

0.5

1

Inf 
D 

p 

78/64 0.5415/0.5490 D=2
1 2 3 4 5 6 7 8

0

0.5

1

Inf 
D 

p 

74/64 0.6814/0.7482 D=2
1 2 3 4 5 6 7 8

0

0.5

1

Inf 
D 

p 

Table 2.Simulation results: MF; (A)= asymptotic analysis
results, (S)=simulation results.

N/L p(A)/p(S) D(A)/D(S)

44/1024 0.51/0.61 D=2
1 2 3 4 5 6 7 8

0

0.5

1

Inf 
D 

p 

31/256 0.22/0.31 D=3
1 2 3 4 5 6 7 8

0

0.5

1

Inf 
D 

p 

144/512 0.10/0.11 D=3
1 2 3 4 5 6 7 8

0

0.5

1

Inf 
D 

p 

In Fig. 6 we notice that the probability break points re-
main approximately the same for all analyzed cases, with
smaller networks favoring slightly higher points than larger
networks. Thus, we can design a practical network using the
diameter/probability dependence determined experimentally
in Fig. 6. From simulations, we determine that a network
diameter ofD = 2 can be obtained for a link probability
p ≥ 0.7 and a network diameter ofD = 3 can be obtained
for p ≥ 0.55 for a large range for the number of nodes.

Finally, using the link probability values experimentally
determined, the ad hoc network capacity for practical fi-
nite systems can be determined for given delay (network
diameter) constraints. Figure 7 illustrates the network ca-
pacity for a network diameter constraint ofD = 2. Figure
7 shows the number of users per dimension that can be sup-
ported in an ad hoc network for a given delay constraint, as a
function of the maximum transmission power requirement,
SNRc = P̄t/σ2.

It can be seen that, using multiuser receivers, almost
cellular capacity (obtained for the case with multiuser re-
ceivers) can be obtained even for very stringent delay (D =
2) and power requirements (transmission powerP̄t = 105σ2).

5 Conclusions

In this paper we have analyzed the asymptotic capacity for
delay sensitive traffic in ad hoc networks. While previ-
ous results focus on enhancing the network capacity at the
expense of increased transmission delay, our approach is
to exploit advanced signal processing techniques, such as
multiuser detection, to enhance capacity when tight delay
constraints are enforced. We have analyzed three different
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Figure 7. Ad hoc network capacity for delay sensitive traf-
fic: D=2

network scenarios for a DS-CDMA air interface in which
the users have matched filters, decorrelating or MMSE re-
ceivers. We have combined physical layer requirements
(signal to interference ratio) with network layer QoS con-
straints (transmission delay). The maximum network trans-
mission delay has been expressed in terms of the maximum
number of hops for any arbitrary selected source-destination
pair of nodes. We then have characterized the network de-
lay using results from random graph theory, related to the
network diameter. Since all derivations in this paper are
asymptotic in nature, simulation results have been presented
for performance validation with finite systems. While ex-
periments have revealed a very close match for the physical
layer performance compared with the asymptotic system,
the network performance is seen to be strongly degraded
compared to the asymptotic case. It has been shown that
an overdesign for the physical layer is required for a finite
network, compared to the theoretical performance obtained
for an asymptotic one. Based on these simulations, gen-
eral trends for capacity have been observed, and have been
shown to hold for a large range of network dimensions. As
expected, the performance improves for both the physical
and the network layer as the number of nodes in the network
increases. Both analysis and simulations have shown signif-
icant network capacity gains for ad hoc networks employing
multiuser detectors, compared with those using matched fil-
ters, as well as a very good performance even under tight
delay and power constraints.
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